
Pergamon
Computers chem. Engng Vol. 22, No. 4/5, pp. 503-514, 1998

© 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

PII: S0098-1354(97)00262-7 0098-1354/98 $19.00+0.00

Recursive PLS algorithms for adaptive
data modeling

S. Joe Qin*

Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712,
U.S.A.

(Received 17 June 1996; revised 25 September 1997)

Abstract

Partial least squares (PLS) regression is effectively used in process modeling and monitoring to deal with a large
number of variables with collinearity. In this paper, several reeursive partial least squares (RPLS) algorithms are
proposed for on-line process modeling to adapt process changes and off-line modeling to deal with a large number
of data samples. A block-wise RPLS algorithm is proposed with a moving window and forgetting factor adaptation
schemes. The block-wise RPLS algorithm is also used off-line to reduce computation time and computer memory
usage in PLS regression and cross-validation. As a natural extension, the recursive algorithm is extended to dynamic
modeling and nonlinear modeling. An application of the block recursive PLS algorithm to a catalytic reformer is
presented to adapt the model based on new data. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: Partial least squares; recursive PLS; cross-validation; forgetting factors; chemical process modeling;
dynamic modeling

NOMENCLATURE

Ai
a j, b u
B
Bi
bl
C
C pLs

PLS
C new

Ei

Fi

J
m

n

nl

n u

ny

P

Pi

P
Q

qi
r i

r
coefficient matrix in an ARX model
quadratic Volterra model coefficients
diagonal matrix of inner model coefficients
coefficient matrix in an FIR or ARX model s
inner model coefficient T
E ~ m xp , model coefficient matrix t~
efltmXp, regression coefficient matrix from uj
PLS u(k)

,fit n, ×p, updated regression coefficient V
matrix from PLS v(k)

~ " × m, residual matrix for X W
~ " ×p, residual matrix for Y w~

objective function in PLS w
number of inputs in X X
number of samples in X and Y x(k)
number of samples in XI and YI Y
maximum time lag for inputs in an ARX e
model A
maximum time lag for outputs in an AKX (.)r
model (°) ÷
E t~ m × a , loading matrix for X II°ll

~ ~', loading vector for X
number of outputs in Y

flip × °, loading matrix for Y

* Author to whom correspondence should be addressed, e-mail:
qin@che.utexas.edu.

[R p, loading vector for Y
~ n, residuals from inner models

rank of the input data matrix

number of data blocks
~ n × o , score matrix for X

~ n, score vector for X
~", score vector for Y

input vector in an AR.X or FIR model
noise matrix
noise vector

fit m × a, weighting matrix in PLS
E fit m, weighting vector in PLS
window size of a moving window
~fft "×m, input data matrix
sample vector for inputs

fit" ×P, output data matrix
error tolerance for the residual
forgetting factor
transpose of a vector or matrix
generalized inverse by PLS
Frobenius norm of a matrix

1. Introduction

Since the pioneering work of Wold (1966), partial
least squares (PLS) regression has been widely applied

503

5O4

in chemometrics (Lindberg et al., 1983; Wold et al.,
1984; Geladi and Kowalski, 1986; Fuller et al., 1988;
and Haaland and Thomas, 1988; Martin and Naes),
steady state process modeling (Piovoso and Owens,
1991), dynamic modeling (Ricker, 1988; Wise and
Kicker, 1990; MacGregor et al., 1991), and process
monitoring (MacGregor et al., 1991; Negiz and Cinar,
1992; Nomikos and MacGregor, 1995). In typical
process applications the input variables are highly
correlated. While the ordinary least squares (OLS)
regression gives rise to an ill-conditioned problem and
large variance, the PLS regression provides a robust
solution by orthogonal projection onto latent variables
and regression on one-dimensional latent variables. A
cross-validation procedure is often used to choose the
number of latent variables or factors to use in a model so
that the prediction variance is reduced. The final PLS
regression is usually biased with reduced variance; as a
result, the overall mean square error is minimized
(H6skuldsson, 1988). Numerically, the PLS regression is
related to singular value decomposition, which is
discussed by Ricker (1988) for the single output case and
by Kaspar and Ray (1993) for the multiple output case.
These results help the user understand the PLS regres-
sion with more well known numerical methods.

In most of the PLS applications to date, the PLS
regression is a batch-wise modeling approach. In other
words, the data are collected and stored in a computer,
then the PLS regression is carried out on the whole batch
of data. While the batch type PLS circumvents the
collinearity problem, it has limitations in the following
situations. First, it is difficult to update a PLS model on-
line using newly available data. While one could rebuild
a new model based on merging the new data and old
data, it is computationally inefficient because the old
data are modeled repeatedly. Second, in the case of large
data sets with many variables and data samples, which is
often encountered in process data analysis, the batch
PLS algorithm may run out of computer memory for a
given computing platform. Third, the typical cross-
validation procedure involves time-consuming and
repetitive calculation by leaving out a subset of data and
modeling on the remaining subsets. It is desirable to
improve the computation efficiency by reusing the
previous calculation in the procedure. In this paper, the
basic recursive partial least squares (RPLS) algorithm
proposed by Helland et al. (1992) and later modified by
Qin (1993) is extended to block-wise RPLS with a
moving window and forgetting factor schemes for steady
state and dynamic process modeling. The RPLS algo-
rithms can adapt the model based on new data and the
old PLS model, thus avoid re-modeling the old data. The
main contributions of the paper are summarized in the
following aspects:

1. The RPLS algorithm is extended to a block-wise
RPLS which builds a PLS sub-model on the new
block of data and then combines with the old PLS
model.

S. J. QIN

2. Both a moving window approach and a forgetting
factor approach are proposed to adapt a PLS model.

3. The block-wise RPLS is applied to cross-validation
in order to reduce computing time and memory usage
in the case of large data sets.

4. Some vague treatments of the original RPLS algo-
rithm by Helland et al. are clarified and mathematical
proofs are provided. These include the treatment of
the number of factors for model updating and the
treatment of output residuals.

The basic PLS algorithm used in this paper is the
NIPALS (nonlinear iterative partial least squares) algo-
rithm (Geladi and Kowalski, 1986). The computation
time of the proposed recursive PLS algorithms and that
of a batch-wise PLS algorithm are compared on the basis
that all algorithms are using the same basic PLS
algorithm. Recent work by Dayal and MacGregor (1997)
propose to use a faster variation of PLS algorithm, i.e.
the kernel algorithm, to further speed up the computa-
tion. It is noted that faster variations of PLS algorithms
can also be used with the recursive PLS algorithms
proposed in this paper.

The remaining sections of the paper is organized as
follows. Section 2 presents a recursive PLS algorithm
proposed by Helland et al. (1992) with a few modifica-
tions and mathematical proofs. Section 3 discusses two
block-wise recursive PLS algorithms based on a moving
window approach and a forgetting factor approach.
These two algorithms can be used to adapt process
changes and correlation structure changes on-line. In the
case of very large data sets for which computing
memory or computing time become an issue, efficient
cross-validation and final PLS modeling approaches are
proposed in Section 4. In Section 5 the use of recursive
PLS algorithms in dynamic modeling and nonlinear
modeling is discussed. Section 6 presents an application
of the block recursive PLS algorithm to model the
product property of a catalytic reformer. The final
Section 7 presents conclusions and discussions.

2. PLS and recursive PLS

2.1. PLS regression

In this section we briefly discuss the traditional batch
PLS algorithm in order to derive the recursive PLS
algorithm. Given a pair of input and output data matrices
X and Y and assuming they are linearly related by

Y=XC+V (1)

where V and C are noise and coefficient matrices,
respectively, the PLS regression builds a linear model by
decomposing matrices X and Y into bilinear terms,

X=hpr+E~ (2)

Y=ulq~+F, (3)

where t~ and u~ are latent score vectors of the first PLS
factor, and p~ and q~ are corresponding loading vectors.
All four vectors are determined by iteration with h and
ul being eigenvectors of x x r y y r and y y r x x r

Recursive PLS algorithms for adaptive data modeling

respectively. Note that x x r y y r is the transpose of
y y r x x r and vice versa; therefore, the two matrices
have identical eigenvalues. The above two equations
formulate a PLS outer model. The latent score vectors
are then related by a linear inner model:

u l = b l h + r l (4)

where b~ is a coefficient which is determined by
minimizing the residual rm. After going through the first
factor calculation, the second factor is calculated by
decomposing the residuals E l and F~ using the same
procedure as for the first factor. This procedure is
repeated until all specified factors are calculated. The
overall PLS algorithm is summarized in Table 1
according to Geladi and Kowalski (1986) to introduce
relations for further derivation. Note that a minor
modification is made in this algorithm such that the
latent variables th are normalized instead of wh and p~.
This modification makes it easier to derive the recursive
PLS regression algorithm. As a result, the latent vectors
th(h = 1, 2, ...), are orthonormal.

The total number of factors required in the model is
usually determined by cross-validation (Geladi and
Kowalski, 1986), although elsewhere an F-test is
suggested (Haaland et al., 1988). A standard way of
doing cross-validation is to divide the data into s subsets
or folds, leave out a subset of data at a time, and build a

Table 1. A traditional batch-wise PLS algorithm

I. Scale X and Y to zero-mean and unit-variance.
Initialize E0:=X, F0:=Y, and h:=O.

2. Let h: = h + 1 and take u~ as some column of F h_ t.
3. Iterate the PLS outer model until it converges:

Wh----E~-,UffU~Uh
th= Eh - ~wh/llE~- ,whll
qh=Fh T- Ith/llF~-Ithll

uh = Fh- ~qh
4. Calculate the X-loadings:

- - T T - - T ph--Eh- ntffthth--Eh-lth
5. Find the inner model:

bh=U~th / t ~th= U hTth
6. Calculate the residuals:

Eh = Eh- t -- thp
Fh----Fh-I -- bht~q h T

7. Return to step 2 until all principal factors are calculated.

505

model with the remaining subsets. The model is then
tested on the subset which is not used in modeling. This
procedure is repeated until every subset has been lef out
once. Summing up all the test errors for each factor, a
predicted error sum of squares (PRESS) is resulted. The
optimal number of factors is chosen as the location of the
minimum PRESS error. The cross-validation method is
computation intensive due to repeated modeling on a
portion of the data. More details of the method can be
found in Geladi and Kowalski (1986).

The robustness of a regression algorithm refers to the
insensitivity of the model estimate to ill-conditioning
and noise. The robustness of PLS vs OLS can be
illustrated geometrically with Fig. 1, which depicts an
extreme case of collinear and noisy data with two inputs
and one output. All the input data are exactly collinear
except for one data point, x, which is corrupted with
noise. These data span a two-dimensional subspace X.
The OLS approach in Fig. l(a) projects the output Y
orthogonally to X. However, since the data point x is
corrupted with random noise which causes its location to
be random, the orientation of the plane X is heavily
affected by the location of x. As a result, the OLS
projection ¢fOLS is highly sensitive to the location of x,
i.e. sensitive to noise. Fig. l(b) shows the PLS model
which requires one factor, i.e. one orthogonal projection
to the one-dimensional subspace h in X. In this case, the
PLS projection YPLS is not affected by the location of x,
i.e. robust to noise. Although this example is idealized, it
illustrates geometrically how PLS is more robust to
noise and collinearity than OLS.

2.2. Recursive PLS regression

Industrial processes often experience time-varying
changes, such as catalytic decaying, drifting, and
degradation of efficiency. In these circumstances, a
recursive algorithm is desirable to update the model
based on new process data that rcfle~,t the process
changes. Helland et al. (1992) introduced a recursive
PLS regression algorithm which updates the model
based on new data without increasing the size of data
matrices. In this paper, we modify and extend the
recursivc PLS algorithm in the following aspects:

• Provide a recursivc PLS algorithm that gives identical
results to the traditional PLS by updating the model

Y resichmi

1

^

P ~

(a) OLS (b) PLS

Fig. 1. A geometric interpretation of PLS and OLS. The PLS method is robust to collinearity and observations corrupted with
noise•

506 S.J.

with the number of factors equal to the rank of the X.
This number is typically larger than that required by
cross-validation for prediction, as is shown in Lemma
1 below.

• Consider the case of rank deficient data X (Lemma 1)
and provide a clear treatment for the output residual
(Lemma 2). These points were not dearly considered
in the original paper of Helland, et al.

Assume that a pair of data matrices {X,Y} has m input
variables, p output variables, n samples. To derive the
recursive PLS algorithm, we first present the following
result.

Lemma 1. I f rank(X)=r<-m, then

E,=Er+) Era=0. (13)

Proof of the lemma is given in Appendix A. This
lemma indicates that the maximum number of factors
does not exceed r. We use the following notation to
represent {T,W,P,B,Q} is the PLS results of data {X,Y}
by the PLS algorithm,

PLS

IX,Y}-" {T,W,P,B,Q} (14)

where

T= [t!, h tr]

W=[W~, w2 w,]

P=[Pl, P2 P,]

B=diag{bl, b2 b,}

Q=[q!, q2 q,]

Here we include all possible number of factors equal to
the rank of the input matrix, r. This is required by the
result of Lemma 1.

(11) and (12) can be rearranged as

X=E0=T p r + E = T p r (15)

Y=TBQT+Fr (16)

It should be noted that the residual matrix F, is generally
not zero unless Y is exactly in the range space of X.
However, we can show that F, is orthogonal to the
scores, as summarized in the following iemma.

Lemma 2. The output residual F~ is orthogonal to the
scores of previous factors th, i.e.

trF~=0, for i>-h (17)

Proof of Lemma 2 is given in Appendix A. By
minimizing the squared residuals, IIY- XCII 2, we have

(xTX)C=Xry. (18)

The PLS regression coefficient matrix is:

CPhS=(xrx) + x r y (19)

where (.) + denotes the generalized inverse defined by
the PLS algorithm. An explicit expression of the PLS
regression coefficient matrix is (H6skuldsson, 1988)

C pLS = W*BQ r (20)

where

QIN

and

W*f[w~, w~ w'] (21)

i - !

w~= ~, (Im--Whp~)wt. (22)

When a new data pair {X!,Y!} is available and we are
interested in updating the PLS model using the aug-
merited data matrices

ix] :[,] X~w= Xl YI '

the resulting PLS model is

e~ X r X + X r y Ix]> Ix] [,]
Since columns of T are mutually orthonormal, the
following relation can be derived using (15) and (16) and
Lemma 2,

X r X = p T r T p r = p p r (24)

X rY = PT rTBQ r+pT rF,= PBQ r . (25)

Therefore, (23) becomes,

Lx,J Lx,J) Lx,J L Y' J" (25)

By comparing (26) with (23), we derive the following
theorem•

PL$

Theorem 1. Given a PLS model, {X,Y} =-*
[T,W,P,B,Q I and a new data pair {X!,Y! }, performing
PLS regression on data pair

[,q
x,J' L Y, J

results in the same regression model as performing PLS
regression on data pair

[x][Y]
) •

Xi YI

It is easy to prove this theorem by comparing (26) with
(23). Instead of using old data and new data to update the
PLS model, the RPLS can update the model using the
old model and new data. The RRPLS algorithm is
summarized in Table 2.

Remark 1. It is necessary in step 2 to check whether
]]E, II---e, or the residual is essential zero. Otherwise,
(24) is not valid. Note that r can be different during the
course o f adaptation as more data are available (usually
increasing). Helland et al. (1992) did not consider this
point in their original RPLS algorithm which results in
numerical errors in their example, although the errors
are minor.

Remark 2. l.emma 2 is necessary to guarantee that

Recursive PLS algorithms for adaptive data modeling

Table 2. The recursive PLS (RPLS) algorithm

507

I. Formulate the data matrices {X,Y}. Scale the data to zero mean and unit variance, or as otherwise specified with a set of
weights.

pig
2. Derive a PLS model using the algorithm in Table 1: {X,Y} --. {T,W,P,B,Q}. Carry out the algorithm until I lE,II-<e (e> 0 is the
error tolerance). This means that more factors are calculated than that required in cross-validation to make theorem 1 hold.

[-} =r o,1 3. When a new pair ofdata, {X~,Y~I, is available, scale it the same way as it was done in step 1. FormulateX-- Xi , [Y~ _]

and return to step 2.

the output residual has no effect on the recursive
algorithm.

If we define the number of rows of the data pair as the
PLS run-size, the RPLS updates the model with a PLS
run-size of (r+nt), while the regular PLS would update
the model with a run-size of (n+nm). One can easily see
that the RPLS algorithm is much more efficient than the
regular PLS if n >> r. Note that this is a typical case in
process modeling and monitoring where tens of thou-
sands of data samples are available for about a few
dozens of process variables.

It should be noted that the recursive PLS algorithm
includes the maximum possible number of PLS factors,
r. However, to use the model for prediction, the number
of factors is determined by cross-validation and is
usually less than r. The purpose of carrying more factors
than currently needed is not only to satisfy Theorem 1,
but also to prepare for process changes in degrees of
freedom or variability, which dictate the number of
factors to vary. For example, when some variables were
correlated in the past, but are not correlated given new
data at present, an increase in the number of factors is
required.

2.3. RPLS for data with non-zero mean

The above RPLS algorithm is derived with the
assumption that the data X and Y are scaled to zero mean
and unit variance. As new data are available, the mean
and variance will change over time. Therefore, the
scaling procedure in step 1 of the RPLS will not make
the new data zero mean and unit variance. The role of
unit variance scaling in PLS is to put equal weight on
each input variable based on its variance, but the
algorithm will still work if the data are not scaled to unit
variance. This makes the RPLS algorithm work even
though the variance may change over time.

However, if the mean of each variable in the data
matrices is not zero, the input-output relationship has to
be modified with the following general linear relation-
ship,

y [c ,}, (27)

where xi and yi represent the ith rows of X and Y,
respectively, and d ~ v is a vector of intercepts for the
general linear model. Therefore, to model data with non-

zero mean, we simply apply the RPLS algorithm on the
following data pair,

I[x ,}gt
where 1 ~ ~ n is a vector whose elements are all one. The

1
i l is to make the norm of ~ 1 scaling factor V'n - 1

comparable to the norm of the columns of X, as the P L S
algorithm is sensitive to how each input variable is
scaled.

The above treatment for non-zero mean data is
consistent with that commonly used in linear regression.
The only difference one can expect is that the PLS
algorithm is biased linear regression, making the esti-
mate of the intercept d also biased. However, the bias is
introduced to reduce the variance and minimize the
overall mean squared error. In the limit of r factors being
used in the PLS model, the PLS regression approaches
OLS regression. Another way to interpret the treatment
is that PLS is equivalent to a conjugate gradient
approach to linear regression (Wold et al., 1984). The
effect of this treatment will be demonstrated with an
application later in this paper.

3. Block-wise RPLS and on-line adaptation schemes

3 1 Block-wise RPLS

Theorem 1 gives a RPLS algorithm which updates the
model as soon as some new samples are available. It
may be desirable not to update the model until
significant amount of data are collected and the process
has gone through significant changes. In this case we can
accumulate a new block of data, derive a PLS sub-model
on the new data block, and then combine it with the
existing model. Assuming the PLS sub-model on the
new data block is,

PLS

{X,,Y, } ---- {T,W,,P,,B,,Q, } (28)

The PLS regression can be calculated from (23) as
follows,

C ~e~=(Xr~Xnew) +xrewY,ew (29)

=(PP r+ P,P r) +(PBQ r+ P~B,Q r)

508

~X,.Lr~J LPrJ/ r , ~ Ln,QrJ

S. J. QIN

Therefore, a PLS model based on two data blocks is
equivalent to combining the two sub-models. We have
the following theorem.

Theorem 2. Assuming two PLS models as given in
(14) and (28), performing PLS regression on

Pq r,,Q'l
P~j'Ln,Q,,j

results in the same regression model as performing PLS
regression on the data pair

[x][Y]
X, Y,

As an extension, i f there are s blocks o f data, and

PLS

{Xj,Y~} . - , {T~,W,,P~,B,,Qj}; i= 1, 2 s (30)

performing PLS regression on all data is equivalent to
performing PLS regression on the following pair o f
matrices

[",q F",Q,q

r,~J L B,Q;j
Theorem 2 can be proven by comparing (23) and (29)

for two blocks of data, and similar results can be
obtained with s blocks. The block-wise RPLS algorithm
can be summarized in Table 3.

The procedure of this block-wise RPLS algorithm is
illustrated in Fig. 2. Updating the PLS model involves
performing PLS on the existing model and the new sub-
model, which requires much less computation than
updating the PLS using the entire data set. The block-
wise RPLS algorithm computes a sub-model with a run-
size of n~ and a updated model with a run-size of (2r).
The block RPLS algorithm has its computational
advantage for on-line adaptation with a moving window
and in cross-validation for off-line PLS modeling, which
will be demonstrated in the following sections.

3.2. On-line adaptation with a moving window

To adequately adapt process changes, it is desirable to
exclude extremely old data because the process has
changed. A moving window approach can be used to
incorporate new data and drop out old data. The
objective function for the PLS algorithm with a moving
window can be written as

Table 3. The block-wise RPLS algorithm

1. Formulate the data matrices {X,Y}. Scale the data to zero mean and unit variance, or as otherwise specified.
PL$

2. Derive a PLS model using the algorithm in Table i: {X,Y} --. {T,W,P,B,Q}. Carry out the algorithm until E,=0.
3. When a new pair of data, {X,, Y, }, is available, scale it the same way as it was done in step 1. Perform PLS to derive a sub-model:

PLS
{X,,Y,} ~ {TI,W,,P,,B,,QI}.

IT] IT] _ P Y - BQ 4. FormulateX- p~ , - B~Q~ and retum to step 2.

. . . n o w , , , ,

Ps T PLS P2T P3T • • • sub-model

1 B2Q2 T B3Q3 T BsQs T

i P:l P=rl IP3orl IP:I oombinod
B I Q I T B2cQ2o T] [B3cq3cT[• • • BscQscT[m o d e l

Fig. 2. A recursive process for the block-wise RPLS algorithm.

Recursive PLS algorithms for adaptive data modeling

j~ = _ Xs-, C (31)
. ..

I X s - w + l

I I1' = ~ Yi - XIC
i f f i s - w + l

= :~ T,(B~Q~r-P~rC)+Fn 2
i r i s - ~t,÷ I

= ~ trace{[Ti(BiQr-prC)+Fn] r
i : , - w + l

[Ti(B,Q jr_ p rC) +F,d ,] [1

where w is the number of blocks in the window and s J,.~=
represents the current block of data. By using Lemma
2,

TTF~=o (32)

and TrTt=l, we obtain,

J"~= i:,-~w+, trace{ [BsQ~- P~C] r[BtQr- P~C] }

+trace{FrFn} (33) 1

~--" i f f i s - w + l Ffi

F B~Q r F Pr I [/
L B , o ; - - + , LP:--.,

Since the second term on the right hand side of the above
equation is a constant, it can be dropped out of the
objective function. Therefore, minimizing the objective
function in (31) is equivalent to minimizing that in (33),
except that the number of rows in (33) can be much
fewer than that in (31). We can simply perform PLS
regression on the following pair of matrices

p r B,Qr
p r+,: B,+,Qr+,

T LPs-w+l Bs-w+IQ i

as the input and output matrices, respectively. When a
new block of data (s+ 1) is available, a PLS sub-model is
first derived to obtain P r+, and r Bs+,Q,+ ~. Then they are
augmented into the top row of the above matrices and
the bottom row is dropped out. The window size w,
which is the number of blocks, controls how old the data
that are kept in the window. The smaller the window
size, the faster the model adapts new data and forgets old
data. Assuming each data block has n~ samples, the
block-wise RPLS update the model with a run-size of
(rw), while the regular PLS would update the model for
a run-size of n~w. Clearly, the RPLS algorithm with a
moving window is advantageous when n~ >r.

509

3.3. Adaptation with forgetting factors

An alternative approach to on-line adaptation is to use
forgetting factors. The use of forgetting factors is well
known in recursive least squares (Ljung, 1987). Here we
incorporate a forgetting factor in the block-wise RPLS
algorithm to adapt process changes. To derive the
recursive regression, we start the PLS modeling on the
first data block by minimizing (from (33) after ignoring
the constant term):

J, =IIB,Q r - P rCII 2 (34)

With s blocks of data available, we minimize the
following objective function with a forgetting factor,

A

B,Q r
Bs_,Qr_,

BIQ~

/ , - ,o , - , /_ .

\L B,Q, j j /

[P~ T

_ P , - I C)II 2 (35)

1,, ~

C 112+llBsQ r - P,rCII2

=A2js_ r r 2 ,.A+IIB,Qs - PsCII

where 0<A-<I is the forgetting factor. J,-l.~ is the
objective function at step s - 1. This expression indi-
cates that the weights on old data blocks decay
exponentially. A smaller A will forget old data faster.
Assuming at step s - 1 we have a combined model

T T {P,oBscQsc}, according to Theorem 2, (35) can be
rewritten as

_ 2 T T 2 7 J,.~-A IIB,cQ,c - PscCII +lIB,Q, - prcII 2 (36)

AB,cQ sc AP ~c

Therefore, the PLS model at step s can be obtained by
performing PLS using

[,:l
AP,~J

as the input matrix and

1
AB,cQ,r J

as the output matrix. To update a RPLS model with a

510 S. J. QIN

forgetting factor, one simply needs to derive a sub-
model on the current data block, then combines it with
the old model with a forgetting factor. The computation
effort in updating the model is equivalent to performing
a PLS regression with a run-size 2r.

The forgetting factor approach is eomputationally
more efficient than the moving window approach. Table
4 compares the computation load in terms of PLS run-
sizes for the batch PLS, recursive PLS, block RPLS,
block RPLS with moving windows, and block RPLS
with forgetting factors. Typically, nt>r and s>w.

Therefore, the computation load is significantly reduced
in the RPLS and the block RPLS with forgetting
factors.

4. Cross-validation and final PLS using block RPLS

In process applications, the number of data samples
available for modeling is often very large. In this case,

we divide the data into s blocks and perform leave-one-
block-out cross-validation. After the number of factors is
determined through cross-validation, a final PLS model
is obtained by performing PLS regression on all
available data. Since the regular cross-validation
involves modeling the data repeatedly, it is computation-
ally inefficient. In this section, we use the block RPLS to
reduce the computation load in cross-validation and final
PLS modeling.

Fig. 3 illustrates the use of block RPLS for cross-
validation and final PLS modeling to improve the
computation efficiency. First, the data are divided into s
blocks, as in the regular cross-validation. Then a sub-
model is built for each block using PLS regression.
Third, we calculate the PRESS error by the leave-one-
block-out approach. Assuming we leave the ith block out
and build a PLS model on the remaining blocks, the
following objective function is minimized (similar to
(33)),

Table 4. The PLS run-sizes for the batch PLS, recursive PLS, block RPLS, block RPLS with moving
windows, and block RPLS with forgetting factors*

Batch PLS Reeursive PLS Block RPLS Block RPLS with Block RPLS with
moving windows forgetting factors

Sub-model None None n~ n~ n,
Update s*n~ r+ n~ s*r w*r 2*r

n u: number of samples in a block; r: rank of the input data matrix; s: number of blocks; w: window size in
blocks).

l l
_ B _T BIQ1T 2Q2

1

ooo o°o
l l

ipi I p T
• • • BiQi T • • • BsQsT

BicQicT

l
P R E S S i

(a) cross validation via block RPLS

I P1 T I Pl: l PLS pT B1QIT [q" IBIoQI• I '[[BQ T

(b) final PLS modeling via block RPLS

Fig. 3. Block diagrams for cross-validation and final PLS modeling using block-wise RPLS algorithm.

Recursive PLS algorithms for adaptive data modeling

$

J,c= ~[IIBjQf- PfCII 2 (37)

which means that we build a PLS model by combining
all sub-models except the ith one,

" ~ - [~ P ' ' T I + (:~ P~BJQf) , ~ ' 5 • ~,[(38)

where C~ Ls denotes a PLS model derived from all data
but the ith block. By leaving out each block in turn, the
cross-validated PRESS corresponding to the number of
factors is

PRESS(h)= ~ PRESS,= ~ IIY~-X,C~LSII 2 (39)
i=l iffil

The number of factors that gives minimum PRESS is
used in the final PLS modeling.

The final PLS model can be obtained by simply
performing PLS regression on an intermediate model
derived in the process of cross-validation. For example,
assuming leaving out {Xt,Y~} results in a PLS model

T T {P,oB,~QI~}, the final PLS model can be derived by
performing PLS regression on

[P,T.l r ,.Q;cl
Prj'LB,Q, j

In both cross-validation and final PLS modeling, the
amount of computation is significantly reduced for
modeling a large number of data samples.

4.1. Example 1.

To demonstrate the effectiveness of the block RPLS
algorithm for cross-validation and final PLS modeling,
we assume there are 20 blocks of data and each block
has 1000 samples. There are overall 10 input variables
and one output variable. Assume the input data matrix is
full rank. The computation involved in cross-validation
and final PLS modeling using the block RPLS algorithm
is given in Table 5 with a comparison with the regular
cross-validation and PLS approach. Since there is only
one output variable, The PLS outer modeling involves
no iteration. As a result, the amount of calculation can be
exactly measured by the PLS run-size. It can be seen
from Table 5 that the amount of computation is
significantly reduced by using the block RPLS algo-
rithm.

In the case of multiple output variables, iteration for
outer modeling is required. In each iteration, the
computation effort is also proportional to the size of the
PLS run. In this case, it is somewhat difficult to estimate
the exact computation effort in a PLS run due to the
unknown number of iterations. However, one can expect
that the number of iterations in a smaller run-size would
typically be smaller than that in a bigger run-size.

511

Therefore, we can still use the run-size as a measure of
computation effort.

An additional feature of the block RPLS algorithm is
that it requires to put only a block data in the memory to
facilitate the computation. This is advantageous when
there are a large number of samples and the computer
will run out of memory if a regular PLS algorithm is
used. The block RPLS algorithm can avoid the memory
shortage problem by building a sub-model for each
block and then build the final model by combining sub-
models.

5. Dynamic a n d n o n l i n e a r R P L S regression

5. I. Dynamic process modeling

One type of dynamic model is the auto-regressive
model with exogenous inputs (ARX, Ljung, 1987),

n n M

y(k)= i~ A,y(k-i)+ j~ Bju(k-j)+v(k) (40)

where y(k), u(k) and v(k) are the process output, input,
and noise vectors, respectively, with appropriate dimen-
sions for multi-input-multi-output systems. A, and Bj are
matrices of model coefficients to be identified, ny and n,
are time lags for the output and input, respectively. In
order for the PLS method to build an ARX model, the
following vector of variables is defined,

x Tfk) = [y T(k - - 1) , y Tfk - - 2) y Tfk -- n,) , u Tfk

-- 1), u r (k - 2) u r (k - nu)] (41)

whose dimension is denoted as m. Then two data
matrices can be formulated as follows assuming the
number of data records is n,

X=[x(1), x(2) x(n)] r E ~ n×m (42)

Y= [y(1), y(2) y (n)] r ~ "×p (43)

where p is the dimension of output vector y(k). Defining
all unknown parameters in the ARX model as,

C = [A I, A 2 A,,, Bi, B2 B , .] r ~ "×p (44)

Eq. (40) can be re-written as

y(k) = C rx(k) +v(k) (45)

and the two data matrices Y and X can be related as

Y = XC + V (46)

The RPLS algorithms developed in this paper can be
readily applied.

It should be noted that the ARX model derived from
PLS algorithms is inherently an equation error approach
(or series--parallel scheme) in system identification
(Ljung, 1987). It has been reported by many researchers
(e.g. Qin and McAvoy, 1996) that the ARX model with
series-parallel identification scheme tends to emphasize
auto-regressiun terms with poor long-term prediction

Table 5. Comparison of the block-wise RPLS and batch PLS computation load in cross-validation and final PLS modeling

Traditional PLS RPLS

CV 20 PLS runs of size 19,000 20 PLS runs of size 1000; 20 PLS runs of size 190
Final model 1 PLS run of size 20,000 1 PLS run of size 20

512 S.J.

accuracy. However, a finite impulse response (FIR)
model is often preferred and is applicable for stable
processes, which can be described as

N
y(k)--- j.__E Bju(k-j)+v(k) (47)

where N is the truncation number that corresponds to the
process settling time. Similar to the ARX model, two
data matrices X and Y can be arranged accordingly. It is
straight forward to apply the RPLS algorithms to this
class of models.

5.2. Nonlinear process modeling

Traditional PLS algorithms have been extended to
nonlinear modeling and data analysis. There are gen-
erally two approaches to extending the traditional PLS to
include nonlinearity, One approach is to use nonlinear
inner models, such as polynomials (Wold et al., 1989)
and neural networks (Qin and McAvoy, 1992; Holeomb
and Morari, 1992; Frank, 1994). Another approach is to
augment the input matrix with nonlinear functions of the
input variables. For example, one may use quadratic
combinations of the inputs as additional input to the
model to build nonlinearity.

Since the RPLS algorithms proposed in this paper
make use of the linear property of the PLS inner models,
it is difficult to develop a nonlinear RPLS algorithm with
nonlinear inner relations. However, one can always
augment the input with nonlinear functions of the inputs
to introduce nonlinearity in the model. For example, it is
straight forward to include quadratic terms in the input
matrix, as it is done in the traditional PLS regression
(Wold et al., 1989). If both quadratic inputs and a
dynamic FIR formulation is used, the model format for
a single-input-single-output process can be represented
a s ,

N N N

y(k)=Yo + j~ aju(k-j)+ ,~t j~t b,ju(k- i)u(k-j)+ v(k)

(48)
where the bias term Y0 is required even though the input
and output are scaled to zero mean. The resulting model
is actually a second order Volterra series model, as
studied by (Pearson et al., 1992). In this configuration, it
is necessary to discard terms that have little contribution
to the output variables. This issue of discarding unim-
portant input terms deserves further study.

6. Applications to chemical process modeling

In this section we demonstrate the use of the block
reeursive PLS algorithm to predict the research octane
number for a catalytic reformer. The model output is
measured through laboratory test, and it takes a long
time to get the laboratory analysis results. We will use
the recursive PLS algorithm to estimate the property in
real time to eliminate the laboratory test delay. Since it
takes several hours to get one laboratory test sample, we
are faced with a situation that we may have to build a
PLS model based on a modest size data set initially. As
more samples are collected over time, the PLS model is
updated with newly available data. This is one of the

QIN

typical situations in which the block recursive PLS c a n

be applied to update the PLS model.
The PLS model uses ten input variables and one

output. The input variables are aligned with the labo-
ratory samples based on the time when the laboratory
samples were taken. This can be done automatically by
matching the time stamps of the laboratory samples and
those of the process inputs. Initially a PLS model is built
on 66 samples available, which is the first block data.
The mean and standard deviation of this block are
calculated to normalized the data. Since the mean and
variance of the data will change as more data are
collected, the meaning of the normalization process is
different from that in a typical PLS procedure. Normal-
ization based on the mean is simply to build the model
around where the data variation is. A constant input of
I / V ~ in this example is augmented to the PLS model
to adapt for the mean changes. The normalization based
on the standard deviation is simply to equalize the
weights on the variations of each variable.

To build the initial PLS model based on the first data
block, a three-fold cross-validation is conducted, which
results in seven factors for the PLS model. The actual
and predicted outputs are plotted in Fig. 4(a), with the
residuals in Fig. 4(b). Fig. 4(c) depicts the PLS
regression coefficients for this model, with the eleventh
coefficient for the bias input. When the second data
block is available, a similar PLS model is build on this
block which is shown in Fig. 5. Then the PLS model is
updated by combining the two models using the block
RPLS algorithm. Fig. 6 gives the PLS model when the
sixth data block is available. From Figs. 4(c), 5(c) and
6(c) we notice the changes in the PLS coefficients over
time. The updated PLS model after sixth data blocks is
shown in Fig. 7(c), and the actual and predicted results
for the six blocks of data are shown in Fig. 7(a) and (b).

(a) Actual (-) and predicted (+) output for the first block
110 / , . . / ,°°t

, ,

0 20 40 60
2 (b) ,Residuals for ~a fire block ,

-2
0 20 40 60

O, 15 I~c) PLS rl~relll°ft c°effi-- f°¢ ~" first bl°ck

0 2 4 6 8 10
Variable N u m b e r

80

80

12

Fig. 4. An initial PLS model from the first data block.

Recursive PLS algorithms for adaptive data modeling 513

11(~! ACtual (-) and predicted (*), output for the,~cl

90

80 ~ , , ,
60 80 100 120

(b) Residuals for the 2rid block
2

60 80 100 120
(c) PLS regreukm coefficient= for the 2nd block

_ o J , ,
0 2 4 6 8 10

Variable number

140

140

12

1

-0.
0

(a) Actual (-) and predicted (...) for all blocks
110

90

8O
0 100 200 300 400

10 (.b) Residuals for all blo~,s

o

-5
0 100 200 300 400

(C) PLS regression coefficients for all blocks

Q ~ 0

i i i i

2 4 6 8 10 12
Variable Number

Fig. 5. A PLS model for the second data block.
Fig. 7. The block recursive PLS model after six blocks of data
have been collected.

With this application we illustrate how the block RPLS
algorithm can be used to update a PLS model based on
new data.

7. C o n c l u s i o n s

In this paper we present several recursive PLS
algorithms for adaptive process modeling based on the
initial method of Helland et al. (1992). The main results
in the paper are:

1. The RPLS algorithm is extended to a block-wise
RPLS which builds a PLS sub-model on the new

(a) Actual (-) and predicted (+) output for the 6th block
95

93

92
330 340 350 360 370 380 390
1 . (b) Residuals ~ the 6 ~ block,

-2 / , i i i i /
330 340 350 360 370 380 390
1 (c) PLS .regression coefficients ~ r the 6 .ill block

0:to &o
, ' W , ,

0 2 4 6 8 10 12
Variable number

Fig. 6. A PLS model for the sixth data block.

block of data and then combines with the old PLS
model.

2. Both a moving window approach and a forgetting
factor approach are proposed to update a PLS
model.

3. The block-wise RPLS is applied to cross-validation
and final PLS modeling in order to reduce computing
time and memory usage in the case of large data
sets.
The use of recursive PLS algorithms in dynamic
modeling and nonlinear modeling is discussed.

In deriving the recursive PLS algorithms we modified
the PLS algorithm so that the score matrix T is
orthonormaL Some erroneous treatments in the original
RPLS algorithm by Helland et al. are clarified and
mathematical proofs are provided. The number of
factors for model updating has to make the input residual
E close to zero, while the number of factors for
prediction is determined by cross-validation.

The recursive PLS algorithms can be used on-line or
off-line to tackle different problems. In the application
example presented in the paper we use the block RPLS
algorithm to update the model when more data are
available. Other possible applications that can benefit
from using the RPLS algorithms are: (1) on-line
adaptation of process changes over time, which will use
the moving window approach or the forgetting factor
approach; and (2) adapting for changes in correlation
structure. As process operating conditions may change
over time, the correlation structure will change accord-
ingly. For example, some changes can introduce addi-
tional degrees of variability, which require additional
PLS factors in the model. An interesting issue that
deserves further study is how to perform cross-validation
on-line to update the number of factors needed for
prediction.

4.

514

References

Dayal, B. S. and MacGregor, J. F. (1997) Recursive
exponentially weighted PLS and its applications to
adaptive control and prediction. J. Process Control
7(3), 169-179.

Frank, I. E. (1994) NNPPSS: neural network based on
PCR and PLS components nonlinearized by
smoothers and splines. Paper presented at
In CINC '94.

Fuller, M. P., Ritter, G. L. and Draper, C. S. (1988)
Partial least-squares quantitative analysis of infra-
red spectroscopic data. Part I: algorithm imple-
mentation; Part II: application to detergent analysis.
Appl. Spectrosc. 42, 217-236.

Geladi, P. and Kowalski, B. R. (1986) Partial least-
squares regression: a tutorial. Anal, Chim. Acta 185,
1-17.

Haaland, D. M. and Thomas, E. V. (1988) Partial least
squares methods for spectral analysis: 1. Relation to
other quantitative calibration methods and the
extraction of qualitative information. 2. Application
to simulated and glass spectral data. Anal. Chem.
60, 1193-1208.

Helland, K., Berntsen, H. E., Borgen, O. S. and Martens,
H. (1992) Recursive algorithm for partial least
squares regression. Chemometrics Intell. Lab. Syst.
14, 129-137.

Holcomb, T. and Morari, M. (1992) PLS/neural net-
works. Computers Chem. Engng 16(4), 393-411.

H6skuldsson, A. (1988) PLS regression methods. J.
Chemometrics 2, 211-228.

Kaspar, M. and Ray, W. H. (1993) Partial least squares
modeling as successive singular value decomposi-
tions. Computers Chem. Engng 17, 985-989.

Lindberg, W., Persson, J. and Wold, S. (1983) Partial
least squares method for spectrofluorimetric analy-
sis of mixtures of humic and liguinsulfonate. Anal,
Chem. 55, 643--648.

Ljung, L. (1987) System Identification: Theory for the
User. Prentice-Hall, Englewood Cliffs, New Jer-
sey.

MacGregor, J. F., Marlin, T. E., Kresta, J. and Skager-
berg,. B. (1991) Multivariate statistical methods in
process analysis and control. In Proc. of the
Chemical Process Control Conference, CPC-IV, eds
S. Padre Island, Texas, 18-22 Feb.

Martens, H. and Naes, T., Arkun, Y. and Ray, W. H.
(1989) Multivariate Calibration. Wiley, New York.

Negiz, A. and Cinar, A. (1992) On the detection of
multiple sensor abnormalities in multivariate proc-
esses In Proc. of ACC, Chicago, IL.

Nomikos, P. and MacGregor, J. (1995) Multi-way partial
least squares in monitoring batch processes. Tech-
nometrics 37, 41-51.

Pearson, R. K., Ogunnaike, B. A. and Doyle, F. J.
(1992)Identification of discrete convolution models
for nonlinear processes, AIChE Annual Meeting,
Paper 125b, Miami, 1-6 Nov.

Piovoso, M. and Owens, A. J. (1991) Sensor data
analysis using artificial neural networks. In Proc.
Chemical Process Control (CPC-IV). eds. Y. Arkun
and W. H. Ray Padre Island, TX, 101-118.

Qin, S. J. (1993) A recursive PLS algorithm for system
identification, AIChE Annual Meeting, November
7-12, St. Louis.

S. J. QIN

Qin, S. J. and McAvoy, T. J. (1992) Nonlinear PLS
modeling using neural networks. Computers Chem.
Engng 16(4), 379-391.

Qin, S. J. and McAvoy, T. J. (1996) Building nonlinear
FIR models via a neural net PLS approach.
Computers Chem. Engng 20, 147-159.

Ricker, N. L. (1988) Use of biased least-squares
estimators for parameters in descrete-time pulse-
response models. Ind. Engng Chem. Res. 27(2),
343-350.

Wise, B. M. and R/cker, N. L. (1990) The effect of
biased regression on the identification of FIR and
ARX models, AIChE Annual Meeting, Chicago, IL,
November.

Wold, H. (1996) Nonlinear estimation by iterative least
squares procedures. In Research Papers in Statis-
tics, ed. E David. Wiley, New York.

Wold, S., Ruke, A., Wold, H. and Dunn III, W. J. (1984)
The collinearity problem in linear regression, the
partial least squares (PLS) approach to generalized
inverses. SlAM ,I. Sci . Stat. Computs. 5(3),
735-743.

Wold, S., Kettaneh-Wold, N. and Skagerberg, B. (1989)
Nonlinear PLS modeling. Chemomet. Intell. Lab.
Syst. 7, 53-65.

Appendix A

Proof of Lemma 1
Let [h, t2 tr]ET. Since rank(X)=r=rank(T,), there exists

P, E,~t "xr such that,

X=T,P. r. (49)

The matrix P. can be found by,

P.r=arg mpin IIX-T,prll=(Tr~rr)-'T,rX=T~rX (50)

From the PLS algorithm in Table 1,

i--I T T T pi=X~ti=(X-j~ltjpjlti=Xt i (51)

which means,

From(li),

(P, P2 P~=XrTr=P* • (52)

Er=X- ~ t,pr=x-T~.r=0 (53)
i=1

Further residuals after r factors will be zero according to the
PLS algorithm in Table 1.

QED.
Proof of Lemma 2
Using the fact that t, are mutually orthonormal and

(26), we have

r _ r (~ f) = t r F , _ _bhqr thFi--th F,_ I - bAq j -h

Substituting (10), (8), and (7) in the above equation,
we get

thrF,=trF,_, - t,Tu,q~= t,rF,_, - t,TF,_ ,chq, y

=t rVh_, -- t~Fh_ ,(t rF,_ ,)rt rv,-,/lit rVh-,ll ~

=t rFh_,- t rv,_,=0

QED.

