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Abstract  

Partial least squares (PLS) regression is effectively used in process modeling and monitoring to deal with a large 
number of variables with collinearity. In this paper, several reeursive partial least squares (RPLS) algorithms are 
proposed for on-line process modeling to adapt process changes and off-line modeling to deal with a large number 
of data samples. A block-wise RPLS algorithm is proposed with a moving window and forgetting factor adaptation 
schemes. The block-wise RPLS algorithm is also used off-line to reduce computation time and computer memory 
usage in PLS regression and cross-validation. As a natural extension, the recursive algorithm is extended to dynamic 
modeling and nonlinear modeling. An application of the block recursive PLS algorithm to a catalytic reformer is 
presented to adapt the model based on new data. © 1998 Elsevier Science Ltd. All rights reserved 

Keywords: Partial least squares; recursive PLS; cross-validation; forgetting factors; chemical process modeling; 
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coefficient matrix in an ARX model 
quadratic Volterra model coefficients 
diagonal matrix of inner model coefficients 
coefficient matrix in an FIR or ARX model s 
inner model coefficient T 
E ~ m xp ,  model coefficient matrix t~ 
efltmXp, regression coefficient matrix from uj 
PLS u(k) 

,fit n, ×p,  updated regression coefficient V 
matrix from PLS v(k) 

~ "  × m, residual matrix for X W 
~ "  ×p,  residual matrix for Y w~ 

objective function in PLS w 
number of inputs in X X 
number of samples in X and Y x(k) 
number of samples in XI and YI Y 
maximum time lag for inputs in an ARX e 
model A 
maximum time lag for outputs in an AKX (.)r 
model (°) ÷ 
E t~ m × a ,  loading matrix for X II°ll 

~ ~', loading vector for X 
number of outputs in Y 

flip × °, loading matrix for Y 
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[R p, loading vector for Y 
~ n, residuals from inner models 

rank of the input data matrix 

number of data blocks 
~ n × o ,  score matrix for X 

~ n, score vector for X 
~",  score vector for Y 

input vector in an AR.X or FIR model 
noise matrix 
noise vector 

fit m × a, weighting matrix in PLS 
E fit m, weighting vector in PLS 
window size of a moving window 
~fft "×m, input data matrix 
sample vector for inputs 

fit" ×P, output data matrix 
error tolerance for the residual 
forgetting factor 
transpose of a vector or matrix 
generalized inverse by PLS 
Frobenius norm of a matrix 

1. Introduction 

Since the pioneering work of Wold (1966), partial 
least squares (PLS) regression has been widely applied 
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in chemometrics (Lindberg et al., 1983; Wold et al., 
1984; Geladi and Kowalski, 1986; Fuller et al., 1988; 
and Haaland and Thomas, 1988; Martin and Naes), 
steady state process modeling (Piovoso and Owens, 
1991), dynamic modeling (Ricker, 1988; Wise and 
Kicker, 1990; MacGregor et al., 1991), and process 
monitoring (MacGregor et al., 1991; Negiz and Cinar, 
1992; Nomikos and MacGregor, 1995). In typical 
process applications the input variables are highly 
correlated. While the ordinary least squares (OLS) 
regression gives rise to an ill-conditioned problem and 
large variance, the PLS regression provides a robust 
solution by orthogonal projection onto latent variables 
and regression on one-dimensional latent variables. A 
cross-validation procedure is often used to choose the 
number of latent variables or factors to use in a model so 
that the prediction variance is reduced. The final PLS 
regression is usually biased with reduced variance; as a 
result, the overall mean square error is minimized 
(H6skuldsson, 1988). Numerically, the PLS regression is 
related to singular value decomposition, which is 
discussed by Ricker (1988) for the single output case and 
by Kaspar and Ray (1993) for the multiple output case. 
These results help the user understand the PLS regres- 
sion with more well known numerical methods. 

In most of the PLS applications to date, the PLS 
regression is a batch-wise modeling approach. In other 
words, the data are collected and stored in a computer, 
then the PLS regression is carried out on the whole batch 
of data. While the batch type PLS circumvents the 
collinearity problem, it has limitations in the following 
situations. First, it is difficult to update a PLS model on- 
line using newly available data. While one could rebuild 
a new model based on merging the new data and old 
data, it is computationally inefficient because the old 
data are modeled repeatedly. Second, in the case of large 
data sets with many variables and data samples, which is 
often encountered in process data analysis, the batch 
PLS algorithm may run out of computer memory for a 
given computing platform. Third, the typical cross- 
validation procedure involves time-consuming and 
repetitive calculation by leaving out a subset of data and 
modeling on the remaining subsets. It is desirable to 
improve the computation efficiency by reusing the 
previous calculation in the procedure. In this paper, the 
basic recursive partial least squares (RPLS) algorithm 
proposed by Helland et al. (1992) and later modified by 
Qin (1993) is extended to block-wise RPLS with a 
moving window and forgetting factor schemes for steady 
state and dynamic process modeling. The RPLS algo- 
rithms can adapt the model based on new data and the 
old PLS model, thus avoid re-modeling the old data. The 
main contributions of the paper are summarized in the 
following aspects: 

1. The RPLS algorithm is extended to a block-wise 
RPLS which builds a PLS sub-model on the new 
block of data and then combines with the old PLS 
model. 
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2. Both a moving window approach and a forgetting 
factor approach are proposed to adapt a PLS model. 

3. The block-wise RPLS is applied to cross-validation 
in order to reduce computing time and memory usage 
in the case of large data sets. 

4. Some vague treatments of the original RPLS algo- 
rithm by Helland et al. are clarified and mathematical 
proofs are provided. These include the treatment of 
the number of factors for model updating and the 
treatment of output residuals. 

The basic PLS algorithm used in this paper is the 
NIPALS (nonlinear iterative partial least squares) algo- 
rithm (Geladi and Kowalski, 1986). The computation 
time of the proposed recursive PLS algorithms and that 
of a batch-wise PLS algorithm are compared on the basis 
that all algorithms are using the same basic PLS 
algorithm. Recent work by Dayal and MacGregor (1997) 
propose to use a faster variation of PLS algorithm, i.e. 
the kernel algorithm, to further speed up the computa- 
tion. It is noted that faster variations of PLS algorithms 
can also be used with the recursive PLS algorithms 
proposed in this paper. 

The remaining sections of the paper is organized as 
follows. Section 2 presents a recursive PLS algorithm 
proposed by Helland et al. (1992) with a few modifica- 
tions and mathematical proofs. Section 3 discusses two 
block-wise recursive PLS algorithms based on a moving 
window approach and a forgetting factor approach. 
These two algorithms can be used to adapt process 
changes and correlation structure changes on-line. In the 
case of very large data sets for which computing 
memory or computing time become an issue, efficient 
cross-validation and final PLS modeling approaches are 
proposed in Section 4. In Section 5 the use of recursive 
PLS algorithms in dynamic modeling and nonlinear 
modeling is discussed. Section 6 presents an application 
of the block recursive PLS algorithm to model the 
product property of a catalytic reformer. The final 
Section 7 presents conclusions and discussions. 

2. PLS and recursive PLS 

2.1. PLS  regression 

In this section we briefly discuss the traditional batch 
PLS algorithm in order to derive the recursive PLS 
algorithm. Given a pair of input and output data matrices 
X and Y and assuming they are linearly related by 

Y=XC+V (1) 

where V and C are noise and coefficient matrices, 
respectively, the PLS regression builds a linear model by 
decomposing matrices X and Y into bilinear terms, 

X=hpr+E~ (2) 

Y=ulq~+F, (3) 

where t~ and u~ are latent score vectors of the first PLS 
factor, and p~ and q~ are corresponding loading vectors. 
All four vectors are determined by iteration with h and 
ul being eigenvectors of x x r y y  r and y y r x x r  
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respectively. Note that x x r y y  r is the transpose of 
y y r x x r  and vice versa; therefore, the two matrices 
have identical eigenvalues. The above two equations 
formulate a PLS outer model. The latent score vectors 
are then related by a linear inner model: 

u l = b l h + r l  (4) 

where b~ is a coefficient which is determined by 
minimizing the residual rm. After going through the first 
factor calculation, the second factor is calculated by 
decomposing the residuals E l and F~ using the same 
procedure as for the first factor. This procedure is 
repeated until all specified factors are calculated. The 
overall PLS algorithm is summarized in Table 1 
according to Geladi and Kowalski (1986) to introduce 
relations for further derivation. Note that a minor 
modification is made in this algorithm such that the 
latent variables th are normalized instead of wh and p~. 
This modification makes it easier to derive the recursive 
PLS regression algorithm. As a result, the latent vectors 
th(h = 1, 2,  ...), are orthonormal. 

The total number of factors required in the model is 
usually determined by cross-validation (Geladi and 
Kowalski, 1986), although elsewhere an F-test is 
suggested (Haaland et al., 1988). A standard way of 
doing cross-validation is to divide the data into s subsets 
or folds, leave out a subset of data at a time, and build a 

Table 1. A traditional batch-wise PLS algorithm 

I. Scale X and Y to zero-mean and unit-variance. 
Initialize E0:=X, F0:=Y, and h:=O. 

2. Let h: = h + 1 and take u~ as some column of F h_ t. 
3. Iterate the PLS outer model until it converges: 

Wh----E~-,UffU~Uh 
th= Eh - ~wh/llE~- ,whll 
qh=Fh T- Ith/llF~-Ithll 

uh = Fh- ~qh 
4. Calculate the X-loadings: 

- -  T T - -  T ph--Eh- ntffthth--Eh-lth 
5. Find the inner model: 

bh=U~th / t  ~th= U hTth 
6. Calculate the residuals: 

Eh = Eh- t -- thp 
Fh----Fh-I --  bht~q h T 

7. Return to step 2 until all principal factors are calculated. 
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model with the remaining subsets. The model is then 
tested on the subset which is not used in modeling. This 
procedure is repeated until every subset has been lef out 
once. Summing up all the test errors for each factor, a 
predicted error sum of squares (PRESS) is resulted. The 
optimal number of factors is chosen as the location of the 
minimum PRESS error. The cross-validation method is 
computation intensive due to repeated modeling on a 
portion of the data. More details of the method can be 
found in Geladi and Kowalski (1986). 

The robustness of a regression algorithm refers to the 
insensitivity of the model estimate to ill-conditioning 
and noise. The robustness of PLS vs OLS can be 
illustrated geometrically with Fig. 1, which depicts an 
extreme case of collinear and noisy data with two inputs 
and one output. All the input data are exactly collinear 
except for one data point, x, which is corrupted with 
noise. These data span a two-dimensional subspace X. 
The OLS approach in Fig. l(a) projects the output Y 
orthogonally to X. However, since the data point x is 
corrupted with random noise which causes its location to 
be random, the orientation of the plane X is heavily 
affected by the location of x. As a result, the OLS 
projection ¢fOLS is highly sensitive to the location of x, 
i.e. sensitive to noise. Fig. l(b) shows the PLS model 
which requires one factor, i.e. one orthogonal projection 
to the one-dimensional subspace h in X. In this case, the 
PLS projection YPLS is not affected by the location of x, 
i.e. robust to noise. Although this example is idealized, it 
illustrates geometrically how PLS is more robust to 
noise and collinearity than OLS. 

2.2. Recursive PLS regression 

Industrial processes often experience time-varying 
changes, such as catalytic decaying, drifting, and 
degradation of efficiency. In these circumstances, a 
recursive algorithm is desirable to update the model 
based on new process data that rcfle~,t the process 
changes. Helland et al. (1992) introduced a recursive 
PLS regression algorithm which updates the model 
based on new data without increasing the size of data 
matrices. In this paper, we modify and extend the 
recursivc PLS algorithm in the following aspects: 

• Provide a recursivc PLS algorithm that gives identical 
results to the traditional PLS by updating the model 

Y resichmi 

1 

^ 

P ~  

(a) OLS (b) PLS 

Fig. 1. A geometric interpretation of PLS and OLS. The PLS method is robust to collinearity and observations corrupted with 
noise• 
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with the number of factors equal to the rank of the X. 
This number is typically larger than that required by 
cross-validation for prediction, as is shown in Lemma 
1 below. 

• Consider the case of rank deficient data X (Lemma 1) 
and provide a clear treatment for the output residual 
(Lemma 2). These points were not dearly considered 
in the original paper of Helland, et al. 

Assume that a pair of data matrices {X,Y} has m input 
variables, p output variables, n samples. To derive the 
recursive PLS algorithm, we first present the following 
result. 

Lemma 1. I f  rank(X)=r<-m, then 

E,=Er+ ) . . . . .  Era=0. (13) 

Proof of the lemma is given in Appendix A. This 
lemma indicates that the maximum number of factors 
does not exceed r. We use the following notation to 
represent {T,W,P,B,Q} is the PLS results of data {X,Y} 
by the PLS algorithm, 

PLS 

IX,Y}-"  {T,W,P,B,Q} (14) 

where 

T= [t!, h . . . . .  tr] 

W=[W~, w2 . . . . .  w,] 

P=[Pl, P2 . . . . .  P,] 

B=diag{bl, b2 . . . . .  b,} 

Q=[q!, q2 . . . . .  q,] 

Here we include all possible number of factors equal to 
the rank of the input matrix, r. This is required by the 
result of Lemma 1. 

(11) and (12) can be rearranged as 

X=E0=T p r + E =  T p r  (15) 

Y=TBQT+Fr (16) 

It should be noted that the residual matrix F, is generally 
not zero unless Y is exactly in the range space of X. 
However, we can show that F, is orthogonal to the 
scores, as summarized in the following iemma. 

Lemma 2. The output residual F~ is orthogonal to the 
scores of  previous factors th, i.e. 

trF~=0, for i>-h (17) 

Proof of Lemma 2 is given in Appendix A. By 
minimizing the squared residuals, IIY- XCII 2, we have 

(xTX)C=Xry. (18) 

The PLS regression coefficient matrix is: 

CPhS=(xrx) + x r y  (19) 

where (.) + denotes the generalized inverse defined by 
the PLS algorithm. An explicit expression of the PLS 
regression coefficient matrix is (H6skuldsson, 1988) 

C pLS = W*BQ r (20) 

where 

QIN 

and 

W*f[w~, w~ . . . . .  w']  (21) 

i - !  

w~= ~,  (Im--Whp~)wt. (22) 

When a new data pair {X!,Y!} is available and we are 
interested in updating the PLS model using the aug- 
merited data matrices 

ix] :[,] X~w= Xl YI ' 

the resulting PLS model is 

e~ X r X + X r y Ix]> Ix] [,] 
Since columns of T are mutually orthonormal, the 
following relation can be derived using (15) and (16) and 
Lemma 2, 

X r X = p T r T p r = p p  r (24) 

X rY = PT rTBQ r+pT rF,= PBQ r . (25) 

Therefore, (23) becomes, 

Lx,J Lx,J ) Lx,J L Y' J" (25) 

By comparing (26) with (23), we derive the following 
theorem• 

PL$ 

Theorem 1. Given a PLS model, {X,Y} =-* 
[ T,W,P,B,Q I and a new data pair {X!,Y! }, performing 
PLS regression on data pair 

[,q 
x,J' L Y, J 

results in the same regression model as performing PLS 
regression on data pair 

[x][Y] 
) • 

Xi YI 

It is easy to prove this theorem by comparing (26) with 
(23). Instead of using old data and new data to update the 
PLS model, the RPLS can update the model using the 
old model and new data. The RRPLS algorithm is 
summarized in Table 2. 

Remark 1. It is necessary in step 2 to check whether 
]]E, II---e, or the residual is essential zero. Otherwise, 
(24) is not valid. Note that r can be different during the 
course o f  adaptation as more data are available (usually 
increasing). Helland et al. (1992) did not consider this 
point in their original RPLS algorithm which results in 
numerical errors in their example, although the errors 
are minor. 

Remark 2. l.emma 2 is necessary to guarantee that 
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Table 2. The recursive PLS (RPLS) algorithm 
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I. Formulate the data matrices {X,Y}. Scale the data to zero mean and unit variance, or as otherwise specified with a set of 
weights. 

pig  
2. Derive a PLS model using the algorithm in Table 1: {X,Y} --. {T,W,P,B,Q}. Carry out the algorithm until I lE,II-<e (e> 0 is the 
error tolerance). This means that more factors are calculated than that required in cross-validation to make theorem 1 hold. 

[-}  =r o,1 3. When a new pair ofdata, {X~,Y~I, is available, scale it the same way as it was done in step 1. FormulateX-- Xi , [ Y~ _] 

and return to step 2. 

the output residual has no effect on the recursive 
algorithm. 

If  we define the number of  rows of  the data pair as the 
PLS run-size, the RPLS updates the model with a PLS 
run-size of  (r+nt), while the regular PLS would update 
the model with a run-size of  (n+nm). One can easily see 
that the RPLS algorithm is much more efficient than the 
regular PLS if n >> r. Note that this is a typical case in 
process modeling and monitoring where tens of  thou- 
sands of  data samples are available for about a few 
dozens of  process variables. 

It should be noted that the recursive PLS algorithm 
includes the maximum possible number of  PLS factors, 
r. However, to use the model for prediction, the number 
of  factors is determined by cross-validation and is 
usually less than r. The purpose of  carrying more factors 
than currently needed is not only to satisfy Theorem 1, 
but also to prepare for process changes in degrees of  
freedom or variability, which dictate the number of  
factors to vary. For example, when some variables were 
correlated in the past, but are not correlated given new 
data at present, an increase in the number of  factors is 
required. 

2.3. RPLS for  data with non-zero mean 

The above RPLS algorithm is derived with the 
assumption that the data X and Y are scaled to zero mean 
and unit variance. As new data are available, the mean 
and variance will change over time. Therefore, the 
scaling procedure in step 1 of  the RPLS will not make 
the new data zero mean and unit variance. The role of  
unit variance scaling in PLS is to put equal weight on 
each input variable based on its variance, but the 
algorithm will still work if  the data are not scaled to unit 
variance. This makes the RPLS algorithm work even 
though the variance may change over time. 

However, if  the mean of  each variable in the data 
matrices is not zero, the input-output relationship has to 
be modified with the following general linear relation- 
ship, 

y [c ,}, (27) 

where xi and yi represent the ith rows of  X and Y, 
respectively, and d ~  v is a vector of  intercepts for the 
general linear model. Therefore, to model data with non- 

zero mean, we simply apply the RPLS algorithm on the 
following data pair, 

I[x ,}gt 
where 1 ~ ~ n is a vector whose elements are all one. The 

1 
i l  is to make the norm of ~ 1 scaling factor V'n - 1 

comparable to the norm of the columns of  X, as the P L S  
algorithm is sensitive to how each input variable is 
scaled. 

The above treatment for non-zero mean data is 
consistent with that commonly used in linear regression. 
The only difference one can expect is that the PLS 
algorithm is biased linear regression, making the esti- 
mate of  the intercept d also biased. However, the bias is 
introduced to reduce the variance and minimize the 
overall mean squared error. In the limit of  r factors being 
used in the PLS model, the PLS regression approaches 
OLS regression. Another way to interpret the treatment 
is that PLS is equivalent to a conjugate gradient 
approach to linear regression (Wold et al., 1984). The 
effect of  this treatment will be demonstrated with an 
application later in this paper. 

3. Block-wise RPLS and on-line adaptation schemes 

3 1  Block-wise RPLS 

Theorem 1 gives a RPLS algorithm which updates the 
model as soon as some new samples are available. It 
may be desirable not to update the model until 
significant amount of  data are collected and the process 
has gone through significant changes. In this case we can 
accumulate a new block of  data, derive a PLS sub-model 
on the new data block, and then combine it with the 
existing model. Assuming the PLS sub-model on the 
new data block is, 

PLS 

{X,,Y, } ---- {T,W,,P,,B,,Q, } (28) 

The PLS regression can be calculated from (23) as 
follows, 

C ~e~=(Xr~Xnew) +xrewY,ew (29) 

=(PP r+ P,P r) +(PBQ r+ P~B,Q r) 
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Therefore, a PLS model based on two data blocks is 
equivalent to combining the two sub-models. We have 
the following theorem. 

Theorem 2. Assuming two PLS models as given in 
(14) and (28), performing PLS regression on 

Pq r,,Q'l 
P~j'Ln,Q,,j 

results in the same regression model as performing PLS 
regression on the data pair 

[x][Y] 
X, Y, 

As an extension, i f  there are s blocks o f  data, and 

PLS 

{Xj,Y~} . - ,  {T~,W,,P~,B,,Qj}; i= 1, 2 . . . . .  s (30) 

performing PLS regression on all data is equivalent to 
performing PLS regression on the following pair o f  
matrices 

[ ",q F",Q,q 

r,~J L B,Q;j 
Theorem 2 can be proven by comparing (23) and (29) 

for two blocks of data, and similar results can be 
obtained with s blocks. The block-wise RPLS algorithm 
can be summarized in Table 3. 

The procedure of this block-wise RPLS algorithm is 
illustrated in Fig. 2. Updating the PLS model involves 
performing PLS on the existing model and the new sub- 
model, which requires much less computation than 
updating the PLS using the entire data set. The block- 
wise RPLS algorithm computes a sub-model with a run- 
size of n~ and a updated model with a run-size of (2r). 
The block RPLS algorithm has its computational 
advantage for on-line adaptation with a moving window 
and in cross-validation for off-line PLS modeling, which 
will be demonstrated in the following sections. 

3.2. On-line adaptation with a moving window 

To adequately adapt process changes, it is desirable to 
exclude extremely old data because the process has 
changed. A moving window approach can be used to 
incorporate new data and drop out old data. The 
objective function for the PLS algorithm with a moving 
window can be written as 

Table 3. The block-wise RPLS algorithm 

1. Formulate the data matrices {X,Y}. Scale the data to zero mean and unit variance, or as otherwise specified. 
PL$ 

2. Derive a PLS model using the algorithm in Table i: {X,Y} --. {T,W,P,B,Q}. Carry out the algorithm until E,=0. 
3. When a new pair of data, {X,, Y, }, is available, scale it the same way as it was done in step 1. Perform PLS to derive a sub-model: 

PLS 
{X,,Y,} ~ {TI,W,,P,,B,,QI}. 

IT] IT] _ P Y -  BQ 4. FormulateX- p~ , - B~Q~ and retum to step 2. 

. . .  n o w , , , ,  

Ps T PLS P2T P3T • • • sub-model 

1 B2Q2 T B3Q3 T BsQs T 

i P:l P=rl IP3orl IP:I oombinod 
B I Q I  T B2cQ2o T] [B3cq3cT[ • • • BscQscT[ m o d e l  

Fig. 2. A recursive process for the block-wise RPLS algorithm. 
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j~ = _ Xs-, C (31) 
. .. 

I X s - w + l  

I I1' = ~ Yi - XIC 
i f f i s -  w +  l 

= :~ T,(B~Q~r-P~rC)+Fn 2 
i r i s  - ~t,÷ I 

= ~ trace{[Ti(BiQr-prC)+Fn] r 
i : , - w + l  

[Ti(B,Q jr_ p rC) +F,d , ] [ 1  

where w is the number of blocks in the window and s J,.~= 
represents the current block of data. By using Lemma 
2, 

TTF~=o (32) 

and TrTt=l, we obtain, 

J"~= i:,-~w+, trace{ [BsQ~- P~C] r[BtQr-  P~C] } 

+trace{FrFn} (33) 1 

~--" i f f i s - w + l  Ffi 

F B~Q r F Pr  I [ / 
L B . . . .  , o ; - - + ,  LP:--., 

Since the second term on the right hand side of the above 
equation is a constant, it can be dropped out of the 
objective function. Therefore, minimizing the objective 
function in (31) is equivalent to minimizing that in (33), 
except that the number of rows in (33) can be much 
fewer than that in (31). We can simply perform PLS 
regression on the following pair of matrices 

p r  B,Qr 
p r+,:  B,+,Qr+, 

T LPs-w+l Bs-w+IQ . . . .  i 

as the input and output matrices, respectively. When a 
new block of data (s+ 1) is available, a PLS sub-model is 
first derived to obtain P r+, and r Bs+,Q,+ ~. Then they are 
augmented into the top row of the above matrices and 
the bottom row is dropped out. The window size w, 
which is the number of blocks, controls how old the data 
that are kept in the window. The smaller the window 
size, the faster the model adapts new data and forgets old 
data. Assuming each data block has n~ samples, the 
block-wise RPLS update the model with a run-size of 
(rw), while the regular PLS would update the model for 
a run-size of n~w. Clearly, the RPLS algorithm with a 
moving window is advantageous when n~ >r. 
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3.3. Adaptation with forgetting factors 

An alternative approach to on-line adaptation is to use 
forgetting factors. The use of forgetting factors is well 
known in recursive least squares (Ljung, 1987). Here we 
incorporate a forgetting factor in the block-wise RPLS 
algorithm to adapt process changes. To derive the 
recursive regression, we start the PLS modeling on the 
first data block by minimizing (from (33) after ignoring 
the constant term): 

J, =IIB,Q r -  P rCII 2 (34) 

With s blocks of data available, we minimize the 
following objective function with a forgetting factor, 

A 

B,Q r 
Bs_,Qr_, 

BIQ~ 

/ , - ,o , - , /_  . 

\L B,Q,  j j /  

[ P~ T 

_ P , - I  C)II 2 (35) 

1,, ~ 

C 112+llBsQ r -  P,rCII2 

=A2js_ r r 2 ,.A+IIB,Qs - PsCII 

where 0<A-<I is the forgetting factor. J,-l.~ is the 
objective function at step s -  1. This expression indi- 
cates that the weights on old data blocks decay 
exponentially. A smaller A will forget old data faster. 
Assuming at step s - 1  we have a combined model 

T T {P,oBscQsc}, according to Theorem 2, (35) can be 
rewritten as 

_ 2 T T 2 7 J,.~-A IIB,cQ,c - PscCII +lIB,Q, - prcII 2 (36) 

AB,cQ sc AP ~c 

Therefore, the PLS model at step s can be obtained by 
performing PLS using 

[,:l 
AP,~J 

as the input matrix and 

1 
AB,cQ,r J 

as the output matrix. To update a RPLS model with a 
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forgetting factor, one simply needs to derive a sub- 
model on the current data block, then combines it with 
the old model with a forgetting factor. The computation 
effort in updating the model is equivalent to performing 
a PLS regression with a run-size 2r. 

The forgetting factor approach is eomputationally 
more efficient than the moving window approach. Table 
4 compares the computation load in terms of PLS run- 
sizes for the batch PLS, recursive PLS, block RPLS, 
block RPLS with moving windows, and block RPLS 
with forgetting factors. Typically, nt>r and s>w. 

Therefore, the computation load is significantly reduced 
in the RPLS and the block RPLS with forgetting 
factors. 

4. Cross-validation and final PLS using block RPLS 

In process applications, the number of data samples 
available for modeling is often very large. In this case, 

we divide the data into s blocks and perform leave-one- 
block-out cross-validation. After the number of factors is 
determined through cross-validation, a final PLS model 
is obtained by performing PLS regression on all 
available data. Since the regular cross-validation 
involves modeling the data repeatedly, it is computation- 
ally inefficient. In this section, we use the block RPLS to 
reduce the computation load in cross-validation and final 
PLS modeling. 

Fig. 3 illustrates the use of block RPLS for cross- 
validation and final PLS modeling to improve the 
computation efficiency. First, the data are divided into s 
blocks, as in the regular cross-validation. Then a sub- 
model is built for each block using PLS regression. 
Third, we calculate the PRESS error by the leave-one- 
block-out approach. Assuming we leave the ith block out 
and build a PLS model on the remaining blocks, the 
following objective function is minimized (similar to 
(33)), 

Table 4. The PLS run-sizes for the batch PLS, recursive PLS, block RPLS, block RPLS with moving 
windows, and block RPLS with forgetting factors* 

Batch PLS Reeursive PLS Block RPLS Block RPLS with Block RPLS with 
moving windows forgetting factors 

Sub-model None None n~ n~ n, 
Update s*n~ r+ n~ s*r w*r 2*r 

n u: number of samples in a block; r: rank of the input data matrix; s: number of blocks; w: window size in 
blocks). 

l l 
_ B _T BIQ1T 2Q2 

1 

ooo  o°o 
l l 

ipi  I p T 
• • • BiQi  T • • • BsQsT 

BicQicT 

l 
P R E S S i  

(a) cross validation via block RPLS 

I P1 T I Pl: l  PLS pT B1QIT [ q" IBIoQI• I '[ [ BQ T 

(b) final PLS modeling via block RPLS 

Fig. 3. Block diagrams for cross-validation and final PLS modeling using block-wise RPLS algorithm. 
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$ 

J,c= ~[ IIBjQf- PfCII 2 (37) 

which means that we build a PLS model by combining 
all sub-models except the ith one, 

" ~ -  [ ~ P ' ' T I  + ( :~ P~BJQf ) , ~ ' 5  • ~,[ (38) 

where C~ Ls denotes a PLS model derived from all data 
but the ith block. By leaving out each block in turn, the 
cross-validated PRESS corresponding to the number of 
factors is 

PRESS(h)= ~ PRESS,= ~ IIY~-X,C~LSII 2 (39) 
i=l iffil 

The number of factors that gives minimum PRESS is 
used in the final PLS modeling. 

The final PLS model can be obtained by simply 
performing PLS regression on an intermediate model 
derived in the process of cross-validation. For example, 
assuming leaving out {Xt,Y~} results in a PLS model 

T T {P,oB,~QI~}, the final PLS model can be derived by 
performing PLS regression on 

[ P,T.l r ,.Q;cl 
Prj'LB,Q,  j 

In both cross-validation and final PLS modeling, the 
amount of computation is significantly reduced for 
modeling a large number of data samples. 

4.1. Example 1. 

To demonstrate the effectiveness of the block RPLS 
algorithm for cross-validation and final PLS modeling, 
we assume there are 20 blocks of data and each block 
has 1000 samples. There are overall 10 input variables 
and one output variable. Assume the input data matrix is 
full rank. The computation involved in cross-validation 
and final PLS modeling using the block RPLS algorithm 
is given in Table 5 with a comparison with the regular 
cross-validation and PLS approach. Since there is only 
one output variable, The PLS outer modeling involves 
no iteration. As a result, the amount of calculation can be 
exactly measured by the PLS run-size. It can be seen 
from Table 5 that the amount of computation is 
significantly reduced by using the block RPLS algo- 
rithm. 

In the case of multiple output variables, iteration for 
outer modeling is required. In each iteration, the 
computation effort is also proportional to the size of the 
PLS run. In this case, it is somewhat difficult to estimate 
the exact computation effort in a PLS run due to the 
unknown number of iterations. However, one can expect 
that the number of iterations in a smaller run-size would 
typically be smaller than that in a bigger run-size. 
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Therefore, we can still use the run-size as a measure of 
computation effort. 

An additional feature of the block RPLS algorithm is 
that it requires to put only a block data in the memory to 
facilitate the computation. This is advantageous when 
there are a large number of samples and the computer 
will run out of memory if a regular PLS algorithm is 
used. The block RPLS algorithm can avoid the memory 
shortage problem by building a sub-model for each 
block and then build the final model by combining sub- 
models. 

5. Dynamic a n d  n o n l i n e a r  R P L S  regression 

5. I. Dynamic process modeling 

One type of dynamic model is the auto-regressive 
model with exogenous inputs (ARX, Ljung, 1987), 

n n M 

y(k)= i~ A,y(k-i)+ j~ Bju(k-j)+v(k) (40) 

where y(k), u(k) and v(k) are the process output, input, 
and noise vectors, respectively, with appropriate dimen- 
sions for multi-input-multi-output systems. A, and Bj are 
matrices of model coefficients to be identified, ny and n, 
are time lags for the output and input, respectively. In 
order for the PLS method to build an ARX model, the 
following vector of variables is defined, 

x Tfk) = [y T(k - -  1) ,  y Tfk - -  2) . . . . .  y Tfk -- n,) ,  u Tfk 

-- 1), u r ( k -  2) . . . . .  u r ( k -  nu)] (41) 

whose dimension is denoted as m. Then two data 
matrices can be formulated as follows assuming the 
number of data records is n, 

X=[x(1), x(2) . . . . .  x(n)] r E ~  n×m (42) 

Y= [y(1), y(2) . . . . .  y ( n ) ] r ~  "×p (43) 

where p is the dimension of output vector y(k). Defining 
all unknown parameters in the ARX model as, 

C = [ A  I, A 2 . . . . .  A,,, Bi, B2 . . . . .  B , . ] r ~  "×p (44) 

Eq. (40) can be re-written as 

y(k) = C rx(k) +v(k) (45) 

and the two data matrices Y and X can be related as 

Y = XC + V (46) 

The RPLS algorithms developed in this paper can be 
readily applied. 

It should be noted that the ARX model derived from 
PLS algorithms is inherently an equation error approach 
(or series--parallel scheme) in system identification 
(Ljung, 1987). It has been reported by many researchers 
(e.g. Qin and McAvoy, 1996) that the ARX model with 
series-parallel identification scheme tends to emphasize 
auto-regressiun terms with poor long-term prediction 

Table 5. Comparison of the block-wise RPLS and batch PLS computation load in cross-validation and final PLS modeling 

Traditional PLS RPLS 

CV 20 PLS runs of size 19,000 20 PLS runs of size 1000; 20 PLS runs of size 190 
Final model 1 PLS run of size 20,000 1 PLS run of size 20 
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accuracy. However, a finite impulse response (FIR) 
model is often preferred and is applicable for stable 
processes, which can be described as 

N 
y(k)--- j.__E Bju(k-j)+v(k) (47) 

where N is the truncation number that corresponds to the 
process settling time. Similar to the ARX model, two 
data matrices X and Y can be arranged accordingly. It is 
straight forward to apply the RPLS algorithms to this 
class of models. 

5.2. Nonlinear process modeling 

Traditional PLS algorithms have been extended to 
nonlinear modeling and data analysis. There are gen- 
erally two approaches to extending the traditional PLS to 
include nonlinearity, One approach is to use nonlinear 
inner models, such as polynomials (Wold et al., 1989) 
and neural networks (Qin and McAvoy, 1992; Holeomb 
and Morari, 1992; Frank, 1994). Another approach is to 
augment the input matrix with nonlinear functions of the 
input variables. For example, one may use quadratic 
combinations of the inputs as additional input to the 
model to build nonlinearity. 

Since the RPLS algorithms proposed in this paper 
make use of the linear property of the PLS inner models, 
it is difficult to develop a nonlinear RPLS algorithm with 
nonlinear inner relations. However, one can always 
augment the input with nonlinear functions of the inputs 
to introduce nonlinearity in the model. For example, it is 
straight forward to include quadratic terms in the input 
matrix, as it is done in the traditional PLS regression 
(Wold et al., 1989). If both quadratic inputs and a 
dynamic FIR formulation is used, the model format for 
a single-input-single-output process can be represented 
a s ,  

N N N 

y(k)=Yo + j~ aju(k-j)+ ,~t j~t b,ju(k- i)u(k-j)+ v(k) 

(48) 
where the bias term Y0 is required even though the input 
and output are scaled to zero mean. The resulting model 
is actually a second order Volterra series model, as 
studied by (Pearson et al., 1992). In this configuration, it 
is necessary to discard terms that have little contribution 
to the output variables. This issue of discarding unim- 
portant input terms deserves further study. 

6. Applications to chemical process modeling 

In this section we demonstrate the use of the block 
reeursive PLS algorithm to predict the research octane 
number for a catalytic reformer. The model output is 
measured through laboratory test, and it takes a long 
time to get the laboratory analysis results. We will use 
the recursive PLS algorithm to estimate the property in 
real time to eliminate the laboratory test delay. Since it 
takes several hours to get one laboratory test sample, we 
are faced with a situation that we may have to build a 
PLS model based on a modest size data set initially. As 
more samples are collected over time, the PLS model is 
updated with newly available data. This is one of the 
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typical situations in which the block recursive PLS c a n  

be applied to update the PLS model. 
The PLS model uses ten input variables and one 

output. The input variables are aligned with the labo- 
ratory samples based on the time when the laboratory 
samples were taken. This can be done automatically by 
matching the time stamps of the laboratory samples and 
those of the process inputs. Initially a PLS model is built 
on 66 samples available, which is the first block data. 
The mean and standard deviation of this block are 
calculated to normalized the data. Since the mean and 
variance of the data will change as more data are 
collected, the meaning of the normalization process is 
different from that in a typical PLS procedure. Normal- 
ization based on the mean is simply to build the model 
around where the data variation is. A constant input of 
I / V ~  in this example is augmented to the PLS model 
to adapt for the mean changes. The normalization based 
on the standard deviation is simply to equalize the 
weights on the variations of each variable. 

To build the initial PLS model based on the first data 
block, a three-fold cross-validation is conducted, which 
results in seven factors for the PLS model. The actual 
and predicted outputs are plotted in Fig. 4(a), with the 
residuals in Fig. 4(b). Fig. 4(c) depicts the PLS 
regression coefficients for this model, with the eleventh 
coefficient for the bias input. When the second data 
block is available, a similar PLS model is build on this 
block which is shown in Fig. 5. Then the PLS model is 
updated by combining the two models using the block 
RPLS algorithm. Fig. 6 gives the PLS model when the 
sixth data block is available. From Figs. 4(c), 5(c) and 
6(c) we notice the changes in the PLS coefficients over 
time. The updated PLS model after sixth data blocks is 
shown in Fig. 7(c), and the actual and predicted results 
for the six blocks of data are shown in Fig. 7(a) and (b). 

(a) Actual (-) and predicted (+) output for the first block 
110 / , . . / ,°°t 

, , 

0 20 40 60 
2 (b) ,Residuals for ~a  fire block , 

-2 
0 20 40 60 

O, 15 I~c) PLS rl~relll°ft c°effi-- f°¢ ~" first bl°ck 

0 2 4 6 8 10 
Variable N u m b e r  

80 

80 

12 

Fig. 4. An initial PLS model from the first data block. 
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Fig. 5. A PLS model for the second data block. 
Fig. 7. The block recursive PLS model after six blocks of data 
have been collected. 

With this application we illustrate how the block RPLS 
algorithm can be used to update a PLS model based on 
new data. 

7. C o n c l u s i o n s  

In this paper we present several recursive PLS 
algorithms for adaptive process modeling based on the 
initial method of Helland et  al. (1992). The main results 
in the paper are: 

1. The RPLS algorithm is extended to a block-wise 
RPLS which builds a PLS sub-model on the new 

(a) Actual (-) and predicted (+) output for the 6th block 
95 . . . . .  

93 

92 
330 340 350 360 370 380 390 
1 . (b) Residuals ~ the 6 ~ block, 

-2 / , i i i i / 
330 340 350 360 370 380 390 
1 (c) PLS .regression coefficients ~ r  the 6 .ill block 

0:to &o 
, ' W ,  , 

0 2 4 6 8 10 12 
Variable number 

Fig. 6. A PLS model for the sixth data block. 

block of data and then combines with the old PLS 
model. 

2. Both a moving window approach and a forgetting 
factor approach are proposed to update a PLS 
model. 

3. The block-wise RPLS is applied to cross-validation 
and final PLS modeling in order to reduce computing 
time and memory usage in the case of large data 
sets. 
The use of recursive PLS algorithms in dynamic 
modeling and nonlinear modeling is discussed. 

In deriving the recursive PLS algorithms we modified 
the PLS algorithm so that the score matrix T is 
orthonormaL Some erroneous treatments in the original 
RPLS algorithm by Helland et al. are clarified and 
mathematical proofs are provided. The number of 
factors for model updating has to make the input residual 
E close to zero, while the number of factors for 
prediction is determined by cross-validation. 

The recursive PLS algorithms can be used on-line or 
off-line to tackle different problems. In the application 
example presented in the paper we use the block RPLS 
algorithm to update the model when more data are 
available. Other possible applications that can benefit 
from using the RPLS algorithms are: (1) on-line 
adaptation of process changes over time, which will use 
the moving window approach or the forgetting factor 
approach; and (2) adapting for changes in correlation 
structure. As process operating conditions may change 
over time, the correlation structure will change accord- 
ingly. For example, some changes can introduce addi- 
tional degrees of variability, which require additional 
PLS factors in the model. An interesting issue that 
deserves further study is how to perform cross-validation 
on-line to update the number of factors needed for 
prediction. 

4. 
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Appendix  A 

Proof of Lemma 1 
Let [h, t2 . . . .  tr]ET. Since rank(X)=r=rank(T,), there exists 

P, E,~t "xr  such that, 

X=T,P. r. (49) 

The matrix P. can be found by, 

P.r=arg mpin IIX-T,prll=(Tr~rr)-'T,rX=T~rX (50) 

From the PLS algorithm in Table 1, 

i--I T T T pi=X~ti=(X-j~ltjpjlti=Xt i (51) 

which means, 

From(li), 

(P, P2 ..... P~=XrTr=P* • (52) 

Er=X- ~ t,pr=x-T~.r=0 (53) 
i=1 

Further residuals after r factors will be zero according to the 
PLS algorithm in Table 1. 

QED. 
Proof of Lemma 2 
Using the fact that t, are mutually orthonormal and 

(26), we have 

r _  r (  ~ f ) = t r F , _  _bhqr thFi--th F,_ I - bAq j -h  

Substituting (10), (8), and (7) in the above equation, 
we get 

thrF,=trF,_, - t,Tu,q~= t,rF,_, - t,TF,_ ,chq, y 

=t rVh_, -- t~Fh_ ,(t rF,_ ,)rt rv,-,/lit rVh-,ll ~ 

=t rFh_,-  t rv,_,=0 

QED. 


